

Experimental and Numerical Investigation of Propeller-Propeller Dynamic Interaction in a DEP System

Tanuj Sharma, PhD researcher Supervisors: Dr. Djamel Rezgui, Dr. Branislav Titurus

A little about me

- International Student New Delhi, India.
- *MEng Aerospace Engineering*, 2017-2021, University of Bristol.
- PhD (2021) University of Bristol.
- Research Associate (Jun 2025) University of Bristol
- Supervisors: Dr. Djamel Rezgui, Dr. Branislav Titurus

Contents

- 1. Introduction and Challenges in eVTOL's Dynamics
- 2. Motivation & Background Research
- 3. Research Objective
- 4. Multirotor Test Rig Overview
- 5. Numerical Models (MSC NASTRAN)
- 6. Experimental Setup
- 7. Results Numerical vs Experimental
- 8. Conclusion

Introduction to UAM

- Transform urban transportation by integrating electric vertical take-off and landing (eVTOL) aircraft.
- Aim to reduce congestion and improve transportation efficiency.
- Can offer environmental sustainability
- Multirotor concepts with tilting capabilities
- Can lead to new complex dynamics

Vertical Aerospace VX4 [1]

Joby S4 [2]

^{1. &}lt;u>https://evtol.news/vertical-aerospace-VA-1X</u>

^{2. &}lt;u>https://aviationweek.com/aerospace/advanced-air-mobility/joby-building-first-</u> <u>certification-test-s4-evtol</u>

17 June 2025

 Vibration Behaviour
 Dynamic Stability
 Complex Interactions

 Vibration Behaviour
 Whirl Flutter
 Identifying and

 Identifying Resonance
 Whirl Flutter
 Rotor-Structure

 Mitigating Vibrational Impacts
 Stability of Articulated Tilting Rotor System
 Rotor-Rotor Interaction

Need for Comprehensive Research:

- > Addressing these challenges necessitates the development of specialised experimental rigs.
- > Accurate emulation of full-scale eVTOL dynamics is essential for controlled investigations.

EPSRC Engineering and Physical Sciences Research Council

→ flexible beam

electric motor

> propeller

optional tuning masses

> optional adjustable beam length

rigid support (hanging configuration)

17 June 2025

Complex Dynamic Interactions

6

bristol.ac.uk

Wu, J., Rezgui, D. and Titurus, B., 2024. Dynamics of nonlinear beam-propeller system with different numbers of blades. Nonlinear Dynamics, 112(2), pp.833-863.

Research Aim & Objectives

<u>Aim</u>

To investigate the influence of rotor spacing and speed variation on mode veering, forward/backward whirling, and resonance interactions in a multirotor configuration using a validated experimental rig and numerical model.

Objectives

1. Dual-Rotor Test Configuration

- > Use a validated tilting multirotor rig equipped with two independently driven rotors and variable spacing.
- 2. Numerical Interaction Modelling
 - > Extend a 1D MSC NASTRAN beam model to capture gyroscopic, Coriolis, and inertial coupling effects.
- 3. Experimental Modal Analysis
 - Conduct shaker tests, extract FRFs, natural frequencies, damping ratios, and mode shapes.
- 4. Numerical-Experimental Validation
 - > Compare modal trends and Campbell diagrams to evaluate rotor–rotor interaction.

17 June 2025

Dynamic Scaling Methodology

1. <u>Necessity of Dynamic Scaling</u>

- Accurate Representation: Vibrational and Stability characteristics of eVTOL aircraft.
- Practicality: Size, Cost, and Complexity.

2. Objective of Scaling

- Ensure the rig reflects the same dynamic behaviour as the fullscale eVTOL aircraft.
- Dynamically Scale Maxwell X-57 eVTOL aircraft characteristics.

3. Scaling Approach

- > Ensure the order of modes is preserved \rightarrow **OP1/IP1/OP2/T1**.
- Target frequency ratios to align with the Maxwell X-57's full-scale ratios of [1, 3.24, 6.36, 7.67].
- \succ Frequencies (9-100 Hz) <→ RPM Range (450-6000 RPM).

Maxwell X-57 [1]

1. https://www.nasa.gov/centers-and-facilities/armstrong/x-57-maxwell/

Engineering and Physical Sciences Research Council

Preceding Research: Multirotor Test Rig & Numerical Validation

Dynamically scaled multirotor test rig

- ✓ Developed to match modal characteristics of NASA X-57 (via SQP-based Optimisation).
- ✓ Dynamic Characterisation → 1 Rotor Case

> Validated numerical models (1 Rotor):

- \checkmark 3D solid model for structural fidelity.
- ✓ 1D NASTRAN beam model with gyroscopic effects.

> Experimental setup:

- ✓ Impact hammer tests with 5 accelerometers (OP, IP, torsion, pitch, yaw).
- ✓ Test Matrix: 0–4500 RPM.

Mode	Optimisation	NASTRAN	Experiment	
	[Hz]	[Hz]	[Hz]	Damping (%)
1 st Bending	10.45	10.38 (0.67%)	10.23 (2.13%)	0.60
1 st In-Plane	32.11	32.92 (2.49%)	31.66 (1.43%)	0.26
2 nd Bending	62.88	63.36 (0.76%)	64.07 (1.87%)	0.07
1 st Torsion	78.58	70.32 (11.10%)	76.21 (3.06%)	0.25

17 June 2025

NASA Maxwell X-57 – FEM Results

Hoover, C.B., Shen, J., Kreshock, A.R., Stanford, B., Piatak, D.J. and Heeg, J., 2017. Whirl flutter stability and its influence on the design of the distributed electric propeller aircraft X-57. In *17th AIAA Aviation Technology, Integration, and Operations Conference* (p. 3785).

Engineering and Physical Sciences Research Council

17 June 2025

Preceding Research: *Key Phenomena and Outcomes*

- Captured fundamental dynamic effects:
 - ✓ Mode veering
 - ✓ Forward/backward whirl
 - ✓ Resonance interactions
- Strong agreement between numerical and experimental modal properties (<4% error typical).
- Test rig demonstrated sensitivity to rotor RPM, suitable for controlled exploration of coupled dynamics.

Engineering and Physical Sciences 17 June 2025 Research Council

EPSRC

Preceding Research: Resonance Interaction at 3150 RPM

Bristol Multirotor Test Rig Assembly

Numerical Modelling (MSC NASTRAN/PATRAN)

Numerical Modelling (3D Visualisation)

NASTRAN Rotordynamics Model

Experimental Setup – Shaker Test

> Automated Shaker:

- $\checkmark\,$ Synchronized motor control
- ✓ Open loop control (PWM-RPM).
- First rotor assembly at beam tip
- Second rotor 60%, 50% & 40% beam length

Experimental Setup – Accelerometer Arrangement

bristol.ac.uk

EPSKC Engineering and Physical Sciences 17 June 2025 Research Council

Results – Transient Analysis

- 1. Quiescent State (0-1s): 0 RPM, quiescent state.
- Acceleration (1-16s): 465 to 4550 RPM → Out-of-plane acceleration.
- **3. Resonance Region (12-13.5 s):** Peak at 3120 RPM (52 Hz), OP-2 mode.

- **4. Steady-State (16-46s):** 4550 RPM constant, acceleration stabilizes.
- 5. Deceleration (46-61s): RPM decreases to 0.

Results – Spectral Analysis

EPSRC Engineering and Physical Sciences 17 June 2025 Research Council

Results – Frequency Response Analysis (O RPM)

Mode	Туре	Frequency [Hz]		Emer (04)
		Experiment	NASTRAN	Error (%)
M1	Out-of-Plane 1	9.13	9.67	-5.93%
M2	In-Plane 2	28.81	30.30	-5.16%
M3	Torsion 1	46.87	49.13	-4.81%
M4	Out-of-Plane 2	55.9	57.64	-3.11%
M5	Out-of-Plane 3	117.59	112.18	4.60%
M6	In-Plane 2	151.15	157.51	-4.21%
M7	Yaw 1	165.45	174.11	-5.23%
M8	Torison 2	175.5	183.24	-4.41%
M9	Pitch 1	176.39	186.19	-5.56%
M10	Yaw 2	200.75	192.56	4.08%
M11	Out-of-Plane 3	223.17	225.29	-0.95%
M*	-	274.46	-	-
M12	Yaw 3	290.85	282.24	2.96%
M13	In-Plane 3	329.55	321.23	2.53%

Inner rotor located at 60% beam length

Results – *Campbell Diagram (Rotor 2 at 60%)*

Results – Mode Shapes – Veering (550 RPM)

Results – Mode Shapes – Veering (1600 RPM)

bristol.ac.uk

Results – Mode Shapes – Veering (2300 RPM)

bristol.ac.uk

Results – Mode Shapes – Veering (2600 RPM)

bristol.ac.uk

Conclusions

- Demonstrated a controlled experimental framework for investigating rotor-rotor dynamic interactions in multirotor eVTOL structures using a dynamically scaled rig.
- Identified and characterised distinct mode veering interactions across multiple rotor spacing cases (40%, 50%, 60% span), confirmed via both experiment and NASTRAN-based complex eigenvalue analysis.
- Captured clear forward and backward whirl separation in experimental Campbell diagrams, validating whirl predictions from reduced-order beam models.
- Showed that rotor spacing significantly alters coupling patterns, with modal coalescence zones shifting across RPM range.
- > Future work

Acknowledgements

• This research is funded by EPSRC through the Doctoral Training Partnership Award (10177060).

- Project Supervisors:
 - Dr. Djamel Rezgui Associate Professor, Department of Aerospace Engineering, University of Bristol.
 - Dr. Branislav Titurus Associate Professor, Department of Aerospace Engineering, University of Bristol.

Thank You

Questions?

