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Research Motivation
 Development of unconventional rotorcraft configurations

 Bell V-280 tiltrotor to replace UH-60 for US Army

 Rapid growth of civilan eVTOL market

 Tiltrotor blades are required to operate as propellers and rotors

 Underexplored regions of the flight envelope 

 Newly developed thin and twisted shapes

 Further understand expected blade performance:

 Aerodynamic boundaries (e.g blade stall)

 Aeroelastic boundaries (e.g stall flutter)Tiltrotors

eVTOL



Research Motivation
 Formation of modern aerodynamic and aeroelastic databases

 Lack of experimental data for modern CFD validation

 Clearly defined blade geometries and blade structural properties

 Aid certification of new aircraft concepts

 Utilise state-of-the-art experimental methods

Wooden blades with undefined structural 

properties (Hartman et al.)

Unoptmised blades instrumented with 

externally mounted strain gauges 

(Rogallo et al.)



Scope of Investigation
Undertake a multi-measurement experimental approach to characterise the aerodynamic 

performance and blade structural response of the MENtOR tiltrotor blades in propeller mode

• Carried out at University of Glasgow 9ft x 7ft DeHavilland wind tunnel

• Variation of rotational frequency (Ω), Advance ratio (J) and blade pitch at 0.75R 

(𝛽0.75𝑅)

• Unsteady blade strain measurements obtained from instrumented blade set

• Thrust and torque data logged via Rotating Shaft Balance (RSB)

• Blade tip deflections measurements obtained via stereoscopic Digital Image 

Correlation (DIC)



UK National Rotor Rig 
• Recently modified to fixed pitch 

propeller rig

• 1.25m diameter up to tip Mach-scaled 

conditions (𝑀𝑡𝑖𝑝 ≈ 0.6 at 3000 RPM)

• Large available power excess to test in 

deeply stalled conditions

• Telemetry system to transmit blade 

strain gauge and RSB data from 

rotating to stationary frame



Digital Image Correlation
 Stereoscopic imaging to assess blade tip deflections

 Stereo angle of 𝜃𝑆 = 25°

 Phase locked at 𝜑 = 270° using Hall-effect sensor

 Randomised speckle dot pattern applied to blade tip

 Bending displacement and torsional twist obtained via 

image correlation

 Optical parameters

 5 Mpixel GigE-Prosilica CMOS cameras

 200 images per test condition

 Magnification factor  = 7.35 px/mm



 Three parameters:

 Rotational frequency, Ω = 1080 to 1800 RPM, ∆Ω = 120 RPM

 Advance ratio, 𝐽 =
𝑈∞

𝑛𝐷

 Blade pitch, 𝛽0.75 = 16° to 35.7°

Test Matrix



Results - Wind Tunnel Velocity Reference
• Closed return wind tunnel

• Max 𝑈∞ = 70 m/s, empty test section, 𝐽 =
𝑈∞

𝑛𝐷

• Propeller induces velocity around the loop 

• Calibration of contraction ring to set wind speed

• UKNRR rig acts as secondary fan



Results – Strain Gauge

• Ω = 1080 RPM

• Compensated strain ∈𝑩= ∈𝑩
ഥ𝝆

𝝆

ഥ𝜴

𝜴

𝟐

• ҧ𝜌 = 1.225
𝑘𝑔

𝑚3

• ഥΩ = 1800 𝑅𝑃𝑀

• Equivalent dynamic pressure

• Stall indicators

• Deviation from linear behaviour

• Growth in standard deviation post 

stall



Results – Strain Gauge

 𝛽0.75 = 30.5°

 No WT case shows presence of stall

 Irregular pattern and amplitude 

 Distribution of signal energy across 

broadband of frequencies

 J = 0.5 shows stall at 1080 RPM

 1800RPM has repeatable pattern of 

constant amplitude with dominant 1/rev 

spike

 FFT of 1800 RPM shows only harmonics



Results – Blade Modes
• SG data plotted using logarithmic scale

• Solid lines (Numerical) and dashed (Experimental)

• Blade modes identified

• 1st peak at 90-100 Hz which translates to non-

dimensional frequency of 3/rev @ 1800 RPM 

(30Hz) and 5/rev @ 1080 RPM (18Hz)

• Stall cell shedding manifest as excitation of 1st

flap bending mode

• Blade torsional excitation needed to a excite a 

modal response such as stall flutter is large for 

rigid blades 



Results - Stall Boundary Criteria
 Collapse of induced velocity around WT 

loop

 Departure from linear behaviour of the flap 
bending strain vs blade pitch curves

 Marked increase of the standard deviation 
of the flap bending strain, up to twice the 
pre-stalled conditions

 Presence of non-harmonic content in the 
strain spectra, up to 20 % in amplitude of 
the corresponding harmonic content

 Non consistent oscillation amplitude in 
the strain time history
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Results – Blade Tip Deflections 
• Blade tip bending increased for 

larger RPM values due to higher 
loading.

• Flap bending deflections can be 
used to identify presence of stall

• Reduction in deflection magnitude

• Increased measurement 

unsteadiness represented via error 

bars.Ω = 1080 RPM Ω = 1320 RPM



Conclusions
 Stall onset was identified using a criteria established based upon the behaviour 

of the following parameters:

 Induced velocity

 Bending strain vs blade pitch curves

 Standard deviation of strain gauge measurements

 Strain spectra and time histories

 Performance measurements indicated the presence of stall at conditions 
identified using strain gauge identification criteria

 Flap bending tip deflections can also be utilised to identify stall onset

 Blade eigenmode frequencies can be identified from strain measurements
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