Influence of Downstream Waves on Impinging SBLI

Ramachandra Kannan

Timothy Missing, Holger Babinsky

Funded by Harding Distinguished Postgraduate Scholars Programme

Shock-Boundary Layer Interactions

Widely observed in high-speed wall-bounded flow fields Occur in many systems - supersonic intakes and transonic airfoils Associated with flow separation and losses

https://www.heritageconcorde.com/air-in-take-system

Shock-Boundary Layer Interactions

Widely observed in high-speed wall-bounded flow fields Occur in many systems - supersonic intakes and transonic airfoils Associated with flow separation and losses

Canonical configurations:

Normal SBLI

Oblique impinging SBLI

Compression corner

University of Cambridge

https://www.heritageconcorde.com/air-in-take-system

Shock-Boundary Layer Interactions

Widely observed in high-speed wall-bounded flow fields Occur in many systems - supersonic intakes and transonic airfoils Associated with flow separation and losses

Canonical configurations:

https://www.heritageconcorde.com/air-in-take-system

Oblique SBLI

University of Cambridge

Adverse pressure gradient imposed by the shock

Adverse pressure gradient imposed by the shock Boundary layer thickens ahead of shock

Typical experiments introduce additional expansion

Typical experiments introduce additional expansion

Downstream waves are generally ignored - Is this valid?

University of Cambridge

Oblique SBLI

Grossman and Bruce, 2018 [1]: Separation size reduces with decreasing distance DEffect observed for D up to $11\delta_i$

Downstream waves in literature

Grossman and Bruce, 2018 [1]:

Separation size reduces with decreasing distance DEffect observed for D up to $11\delta_i$

University of Cambridge

Downstream waves in literature

University of Cambridge

Downstream waves in literature

Missing and Babinsky, 2023 [2]:

Use of corner cones to study the effect of corner separation

Downstream waves in literature

Missing and Babinsky, 2023 [2]:

Use of corner cones to study the effect of corner separation Downstream expansion influenced the primary SBLI

Downstream waves in literature

Are downstream waves important? Do these factors play significant roles?

University of Cambridge

Key Questions

Do these factors play significant roles?

Location

University of Cambridge

Key Questions

- Do these factors play significant roles?
 - Location
 - Strength

Key Questions

- Do these factors play significant roles?
 - Location
 - Strength

Key Questions

- Do these factors play significant roles?
 - Location
 - Strength

Key Questions

- Do these factors play significant roles?
 - Location
 - Strength
 - Pressure gradient

Key Questions

- Do these factors play significant roles?
 - Location
 - Strength
 - Pressure gradient

Key Questions

- Do these factors play significant roles?
 - Location
 - Strength
 - Pressure gradient

Key Questions

- Do these factors play significant roles?
 - Location
 - Strength
 - Pressure gradient
 - Type of wave

Key Questions

Do these factors play significant roles?

- Location
- Strength
- Pressure gradient
- Type of wave

What is the underlying mechanism?

Key Questions

Test Facilities at Cambridge

University of Cambridge

Test Facilities at Cambridge

Intake studies at transonic Mach numbers

University of Cambridge

Test Facilities at Cambridge

Intake studies at transonic Mach numbers

University of Cambridge

Fundamental SBLI and flow control studies upto M = 3.5

University of Cambridge

Boundary layer $\delta_i = 8mm$

University of Cambridge

 $\delta_i = 8mm$

University of Cambridge

Boundary layer $\delta_i = 8mm$

University of Cambridge

University of Cambridge

Setup

University of Cambridge

Setup

Setup

Variables:

University of Cambridge

Setup

Setup

Setup

 $\overline{\Delta P} = \Delta P_{waves} / \Delta P_{inv,SBLI}$

Setup

$$= \frac{\Delta P_{waves}}{\Delta P_{inv,SBL}}$$

$$\overline{dx} = \overline{\Delta P} / (\frac{d_{sp}}{\delta_i})$$

Setup

$$= \frac{\Delta f}{\delta_{i}}$$
$$= \frac{\Delta P_{waves}}{\Delta P_{inv,SBLi}}$$
$$\overline{dx} = \frac{\overline{\Delta P}}{(d_{sp}/\delta_{i})}$$

Setup

Setup

Set 1

Set 2

Setup

Setup

Setup

Setup

Setup

Incoming boundary layer

University of Cambridge

Separation bubble

University of Cambridge

University of Cambridge

Baseline

 $\overline{d}_f = 6.3$

University of Cambridge

Baseline

 $\overline{d_f} = 6.3$

University of Cambridge

Baseline

$$\overline{d}_f = 6.3$$

 $\overline{d_f} = 1.2$

University of Cambridge

Baseline

 $\overline{d}_f = 1.2$

Key observations on length scales - Expansions

 L_{sep} decreases as d_f decreases

Key observations on length scales - Expansions

 L_{sep} decreases as d_f decreases Set 1 and Set 2 similar despite different ΔP and dp/dx

Key observations on length scales - Expansions

 L_{sep} decreases as d_f decreases Set 1 and Set 2 similar despite different ΔP and dp/dx

 L_{sep} increases as d_f decreases

 L_{sep} increases as d_f decreases

 L_{sep} increases as d_f decreases 340% increase in Set 1 vs 40 % in Set 2

 L_{sep} increases as d_f decreases 340% increase in Set 1 vs 40% in Set 2 Discrepancy due to large difference in gradients

What is the mechanism?

Mechanism 1

University of Cambridge

Set 2 compression

University of Cambridge

Corner flow

Set 1 compression

Ramachandra Kannan

University of Cambridge

Ramachandra Kannan

Conclusions

- Expansion waves decrease the separation length
- Compression waves increase the separation length

- Expansion waves decrease the separation length
- Compression waves increase the separation length

Influence reduces with distance to the interaction

- Expansion waves decrease the separation length
- Compression waves increase the separation length

Influence reduces with distance to the interaction

Two possible mechanisms were proposed

1. Grossman, I. J., and Bruce, P. J., "Confinement effects on regular-irregular transition in shock-wave-boundary-layer interactions," Journal of Fluid Mechanics, Vol. 853, 2018, pp. 171-204. https://doi.org/10.1017/jfm.2018.537.

2. Missing, T., and Babinsky, H., Corner effects on oblique shock wave boundary layer interactions in rectangular channels, AIAA SciTech 2023 Forum, 2023-0650. https://doi.org/10.2514/6.2023-0650.

References

Additional slides: Setup details and data

University of Cambridge

Details of test setups

Centreline separation lengths

Case	Expansion			Baseline	Compression		
d_f/δ_i	1.25	3.76	6.27	-	6.27	3.76	1.25
L_{sep}/δ_i	1.49	1.78	1.98	2.33	3.46	8.51	10.21

Case	Expansion			Baseline	Compression		
d_f/δ_i	1.25	3.76	6.27	-	6.27	3.76	1.25
L_{sep}/δ_i	1.53	1.93	2.17	2.33	2.43	2.74	3.30

University of Cambridge

Set 1

Set 2

