

Development of Aircraft Half Model Testing at the 10x5 Wind Tunnel

William McArdle Ricardo Huerta Cruz Imperial College

IMPERIAL

Development of Aircraft Half-Model Testing at the 10'x5' Wind Tunnel

William McArdle, Ricardo Huerta-Cruz 03/04/2025

10'×5' Wind Tunnel Imperial College

- Max speed = 30 m/s
- $Re = 2x10^6 m^{-1}$

- **1** Model Motion System
- **2** Symmetry Plane Treatment Boundary Layer Control
- **3** NASA Common Research Model High Lift (CRM-HL)

Motivations

- **1** Investigate how to effectively treat the half model symmetry plane
- 2 Reynolds number dependence testing and comparison to other wind tunnels tests of the same model
- **3** Model fidelity
- **4** Test the suitability of using 3D printed parts
- 5 'Workhorse' model before the arrival of Boeing 4% 'gold standard' model

Model Motion System Design and Build Progress

Symmetry Plane Treatment Boundary Layer Suction

Original suction system ahead of rolling road

Modified suction system

Introduction of suction plenum and porous floor upstream of MMS

First results - Neville Koh, MSc Thesis

Boundary layer modification through suction, Neville Koh, MSc Thesis

Boundary layer modification through suction, Neville Koh, MSc Thesis

Boundary layer modification through suction, Neville Koh, MSc Thesis

Luca Kulacz, MEng Thesis

Parameter space

- 2 porosities
- 2 suction widths
- 4 suction levels
- 4 wind speeds
- Floor-normal profiles (25 locations)
- 3 spanwise stations

Data

¥ x

- Streamwise and vertical velocity from Laser
 Doppler Anemometer
- Streamwise (floor and wall) static pressure along flow direction
- Flow rate through orifice plate
- Flow rate through Pitot-s array

Modified suction system

Static Pressure Monitoring

- Taps along the tunnel floor centreline...
- Taps along the wall...
 - Have been introduced to monitor the streamwise evolution of the static pressure, downstream of the suction.
 - This informs the ideal installation location of the MMS disc.

A TE ESP64-HD Pressure scanner acquires the pressures

NASA Common Research Model (CRM-HL) Design and Manufacture – 4% scale

- The fuselage, largely hollowed, will be 3D printed.
- Pressure taps to be included, replicating locations existing in the Boeing UK 6% model, or the NASA 10% model (tested at QinetiQ in 2019).
- Peniche/Standoff design on going

- We're planning two wings:
 - A lower cost, training, version with
 - 3D printed leading edge slats
 - 3D printed flaps on fairings
 - 3D printed trailing edge
 - 3D printed tip.
 - A core machined out of solid hard foam or hard wood.
 - It will have a small sample of taps.
 - A carbon-fibre, hollow version, with
 - 6-10 belts of pressure taps
 - Same 3D printed components as the lower cost version

- We're planning two wings: ٠
 - A lower cost, training, version with
 - 3D printed leading edge slats ٠
 - 3D printed flaps on fairings ٠
 - 3D printed trailing edge ٠
 - A core machined out of solid hard foam • or hard wood.

Core

- It will have a small sample of taps.
- A carbon-fibre, hollow version, with ٠
 - 6-10 belts of pressure taps ٠
 - Same 3D printed components as the lower cost version

Trailing edge + (Machined from solid) Flaps on fairings (3D printed)

- The wing has leading edge slats, and trailing edge deployed flaps.
- We're planning two wings:
 - A lower cost, training, version with
 - 3D printed leading edge slats
 - 3D printed flaps on fairings
 - 3D printed trailing edge
 - A core machined out of solid hard foam or hard wood.
 - It will have a small sample of taps.
 - A carbon-fibre, hollow version, with
 - 6-10 belts of pressure taps
 - Same 3D printed components as the lower cost version

Stress Analysis of the wing

- Material = Modelling Foam
- Distributed load across the half span wing
- Load (Max lift) = 470 N
- Max stress = 8.6 Mpa
- Max Deflection = 40 mm
- Reserve factor 1.8

CRM-HL Design Assembled wing

Imperial College London

CRM-HL Design Assembled wing + fuselage

CRM-HL on MMS

CRM-HL Data Sets

Potential Data Sets

Our aim remains to present some of our data, first a taster at SATA, and then at the Lift Prediction Workshop at AIAA. The following are some potential data sets possible using techniques that the lab has extensive experience in.

- **1** Off-body PIV
- **2** Off-body and on-body LDA
- **3** Surface pressures
- 4 Total loads (6 axes)
- **5** Pre-testing model scan (FARO arm) faithfulness to CAD
- **6** Live non-contact deformation through photogrammetry
- **7** Off-body hot wire measurements

IMPERIAL

Dr. Kevin Gouder (Research Fellow and wind tunnel manager)

Neville Koh (MSc student, now at Boeing UK)

Katya Goodwin (wind tunnel engineer, now studying for a PhD at Imperial)

Alazar Lemma (IROP student from MIT)

Paul Howard (wizard machinist)

Thank you

Development of Aircraft Half-Model Testing at the 10'x5' Wind Tunnel 03/04/2025

Mark Grant (wizard machinist)

Luca Kulacz (Undergraduate Final Year Student)

Franco Giammaria (Electronics engineer)

Riya Gujarathi (Wind tunnel engineer, now pursuing further studies)

IMPERIAL

Questions

Aircraft Half-Model test Capability 03/04/2025

