

Adrian Gaylard JLR

Integrating simulation and test in automotive aerodynamics

Introduction: Gary Page

INTEGRATING SIMULATION AND TEST IN AUTOMOTIVE AERODYNAMICS

ADRIAN GAYLARD, 02 April 2025

Title: Integrating simulation and test in automotive aerodynamics Record Owner: agaylar1 Classification: Public

INTRODUCTION

OVERVIEW

Characteristics Of Full-scale Automotive Wind Tunnels

Integrating Test & Simulation

Development Example: Land Rover Defender

Looking Forwards

Record Type: TRANSIENT

Effective Date: 02 April 2025

Date Last Modified: 11 March 2025

CHARACTERISTICS OF FULL-SCALE AUTOMOTIVE WIND TUNNELS

CHARACTERISTICS OF A FULL-SCALE AUTOMOTIVE WIND TUNNEL

Title: Integrating simulation and test in automotive aerodynamics Record Owner: agaylar1 Classification: Public

CHARACTERISTICS OF A FULL-SCALE AUTOMOTIVE WIND TUNNEL

Title: Integrating simulation and test in automotive aerodynamics Record Owner: agaylar1 Classification: Public

INTEGRATING TEST & SIMULATION

Parallel "Swim Lane" Model

Gaylard (2019), Eng.D. Thesis, http://wrap.warwick.ac.uk/143065/

Integrated Model

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

DEVELOPMENT EXAMPLE: LAND ROVER DEFENDER

THE DEVELOPMENT CHALENGES

Redefining the iconic Land Rover Defender while maintaining a strong design identity

dramatically improved aerodynamic Delivering efficiency

Challenging as the original car had drag in the range $0.62 \le C_D \le 0.69$

Integrating simulation and test

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

TOOLSET: WIND TUNNEL TESTING

Clay demonstrator

"Aerobuck"

Prototype

Design Engagement

Vehicle Development

Final confirmation

Horiba-MIRA Full Scale Wind Tunnel

FKFS Vehicle Aeroacoustics Wind Tunnel

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

TOOLSET: FKFS VEHICLE AEROACOUSTICS WIND TUNNEL

Test Section

- ¾ Open Jet
- Moving ground

Nozzle

- 5.8 m (W) x 3.87 m (H)
- Exit area: 22.45 m2

Performance

Maximum flow velocity 72 m/s

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

TOOLSET: NUMERICAL SIMULATION

- Lattice Boltzman based VLES solver
- 205 x 10⁶ voxels
- 56×10^6 surfels
- Smallest edge length:1.25 mm
- Timestep: 6.95×10^{-6} s
- Sample: 3.14 s

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

PROGRAMME PROGRESS IN TERMS OF DRAG COEFFICIENT BY TOOLSET

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

VEHICLE DEVELOPMENT STRATEGY

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

Record Owner: agaylar1

Classification: Public

SIMULATION LED DEVELOPMENT: FRONT CHIN

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

Title: Integrating simulation and test in automotive aerodynamics Record Owner: agaylar1 Classification: Public

Flow Field

0.00 1.00 **Relative Velocity** Magnitude, V/V_∞

Vehicle Surface

-0.75 0.75 Static Pressure, C_P

SIMULATION LED DEVELOPMENT: BRAKE COOLING

1.00 0.00

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

INTEGRATED DEVELOPMENT: "AIR CURTAIN"

Record Owner: agaylar1

Classification: Public

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

Title: Integrating simulation and test in automotive aerodynamics

INTEGRATED DEVELOPMENT: GRILLE SHUTTERS

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

INTEGRATED DEVELOPMENT: UNDERBODY

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

INTEGRATED DEVELOPMENT: WAKE CONTROL STRATEGY

Eliyas, J., & Gaylard, A., "Integrating Simulation and Test to Develop the Aerodynamics of the New Land Rover Defender," SAE Technical Paper 2024-01-2537, 2024, https://doi.org/10.4271/2024-01-2537.

DEVELOPMENT EXAMPLE: THE LAND ROVER DEFENDER

CONCLUSIONS

Careful integration of numerical simulation and physical test enabled the delivery of a challenging programme that met its aerodynamic targets.

Compared to its predecessor, a drag reduction of 48% or 0.240 C_D was delivered, resulting in a best of 0.38 C_D .

Drag area (C_DA) is also significantly less than its predecessor, even with a larger frontal area (A).

LOOKING FORWARDS

THE FUTURE: SOME QUESTIONS

To better serve customers (and society) how much of the on-road environment should we bring into our wind tunnels and CFD models?

How should we integrate AI/ML into the vehicle aerodynamics development process?

25

Record Type: TRANSIENT

Effective Date: 02 April 2025

Date Last Modified: 11 March 2025

DR. ADRIAN GAYLARD

Technical Specialist - Aerodynamics Research & Development

M: +44 (0) 7771917690

agaylar 1@jaguarlandrover.com