#### Measurements of Propeller Aerodynamic and Aeroelastic Behaviour Under Stall Conditions

Alexander D. Croke, Daniele Zagaglia, Richard B.Green DeHavilland Wind Tunnel Facility (NWTF) University of Glasgow

# **Outline of Presentation**

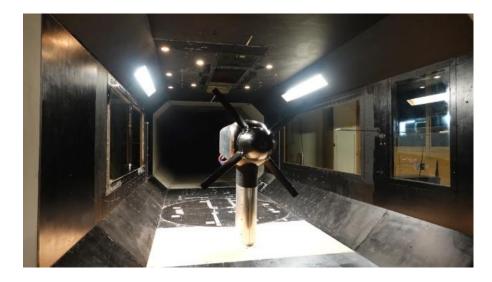
Research Motivation

#### • Experimental Setup

- United Kingdom National Rotor Rig
- DeHavilland 9ft x 7ft Wind Tunnel
- Prominent Results
- Conclusions

# **Research Motivation**

- Growth in EVTOL configurations
  - Operation in both rotor and propeller mode
  - Thin and twisted shapes
  - Unexplored regions of the flight envelope




- Further understand blade aerodynamic and aeroelastic boundaries
  - Stall and flow separation
  - Negative thrust
  - Reverse flow
  - Flutter and modal excitation

Can blade structural response provide insight to operational boundaries?

# **UK National Rotor Rig**

- Integrated into DeHavilland 9ft x 7ft closed return wind tunnel
  - Bespoke steel support structure
- Operational considerations
  - Very high torque and power demand
  - Very large and unsteady loading
  - Mechanical stops to test at fixed blade pitch without cyclic pitch



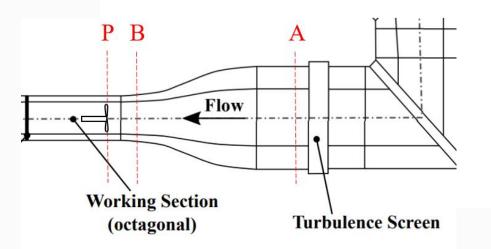
| Maximum Operational Limit | Quantity | Units |
|---------------------------|----------|-------|
| Thrust                    | 3400     | Ν     |
| In-Plane Forces           | 550      | Ν     |
| Torque                    | 350      | Nm    |
| In-Plane Moments          | 250      | Nm    |
| Available Power           | 125      | kW    |
| Rotational Frequency      | 3000     | RPM   |
| Pitch Angle Range         | [-5,40]  | 0     |

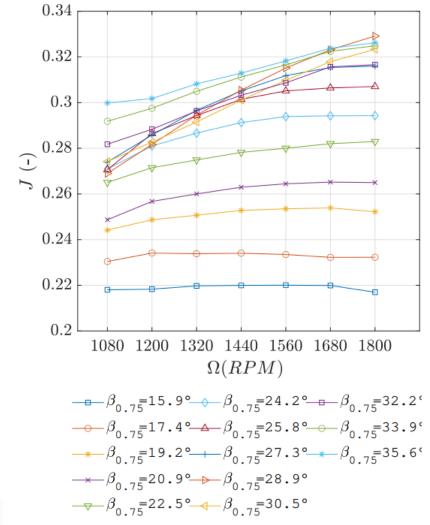
#### Instrumentation

- 1.25m Diameter Carbon fibre composite tiltrotor blades
  - Internally instrumented with 4 fully bridged axial and shear bridges
  - Full bridges compensate for centrifugal and thermal effects
- Rotating Shaft Balance (RSB)
  - 6 component load-cell situated within the rotor hub
- Datatel Telemetry System
  - 60 measurement channels
  - Power supplied to rotating frame via inductive ring
  - 3mm contact free transmission gap between transmitter to the receiver
  - Sampling rates up to 107kHz

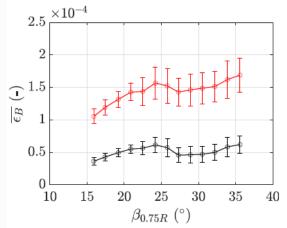





#### **Test Matrix**


- Three parameters:
  - Rotational frequency,  $\Omega = 1080$  to 1800 RPM,  $\Delta\Omega = 120$  RPM
  - Advance ratio,  $J = \frac{U_{\infty}}{nD}$
  - Blade pitch,  $\beta_{0.75} = 15.9^{\circ}$  to 35.6°
- Approximately 100 hours of testing

| $\beta_{0.75R}$   | No WT | J=0.3 | J=0.4 | J=0.5 | J=0.6 | J=0.7 | J=0.8 | J=0.9 | J=1.0 | J=1.1 | J=1.2 | J=1.3 | J=1.4 |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 15.9°             | Х     | Х     | Х     | Х     |       |       |       |       |       |       |       |       |       |
| $17.4^{o}$        | Х     | Х     | Х     | Х     | Х     |       |       |       |       |       |       |       |       |
| 19.2 <sup>o</sup> | Х     | Х     | Х     | Х     | Х     | Х     |       |       |       |       |       |       |       |
| $20.9^{o}$        | Х     | Х     | Х     | Х     | Х     | Х     | Х     |       |       |       |       |       |       |
| $22.5^{o}$        | Х     |       | Х     | Х     | Х     | Х     | Х     | Х     |       |       |       |       |       |
| $24.2^{o}$        | Х     |       | Х     | Х     | Х     | Х     | Х     | Х     | Х     |       |       |       |       |
| 25.8°             | Х     |       | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     |       |       |       |
| 27.3°             | Х     |       | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     |       |       |
| 28.9°             | Х     |       |       | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     |       |
| 30.5°             | Х     |       |       | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     |
| $32.2^{o}$        | Х     |       |       | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     |
| 33.9°             | Х     |       |       | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     |
| 35.6 <sup>o</sup> | Х     |       |       | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     |


### Wind Tunnel Velocity Reference

- Closed return wind tunnel
- Max  $U_{\infty}$  = 70 m/s, empty test section,  $J = \frac{U_{\infty}}{nD}$
- Propeller induces velocity around the loop
- Calibration of contraction ring to set wind speed
- Becomes a stage where the UKNRR drives the wind tunnel flow





# Results – Strain Gauge



(a) No WT

 $2.5 - 10^{-4}$ 

2

 $\bigcirc$  <sup>1.5</sup>

0.5

0

10

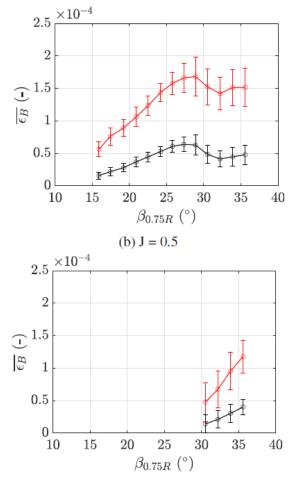
15

20

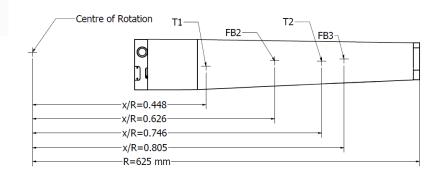
25

 $\beta_{0.75R}$  (°)

(c) J = 1.0

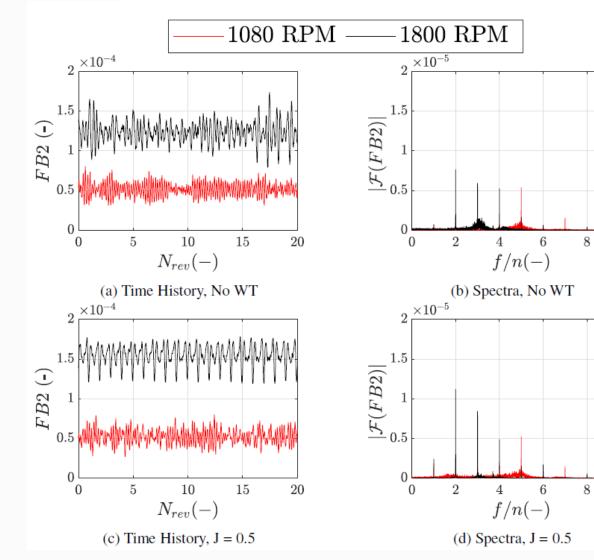

30

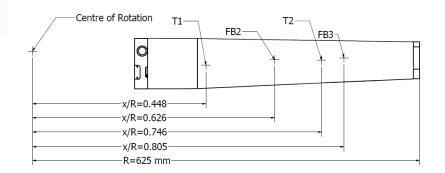
35


40

 $- \bullet - FB2 - \bullet - FB3$ 

 $\epsilon_B$ 





(d) J = 1.4

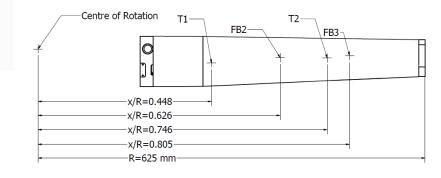


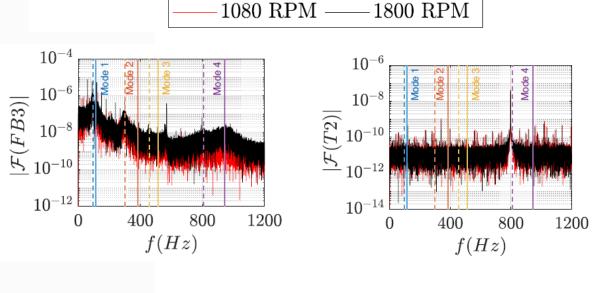
- Ω = 1080 RPM
- Compensated strain  $\overline{\in}_B = \in_B \frac{\overline{\rho}}{\rho} \left(\frac{\overline{\Omega}}{\rho}\right)^2$ 
  - $\bar{\rho} = 1.225 \ \frac{kg}{m^3}$
  - $\overline{\Omega} = 1800 \ RPM$
  - Equivalent dynamic pressure
- Delay in stall onset with increased J
- Stall indicators
  - Deviation from linear behaviour
  - Growth in standard deviation post stall

# Results – Strain Gauge






$$\beta_{0.75} = 30.5^{\circ}$$


10

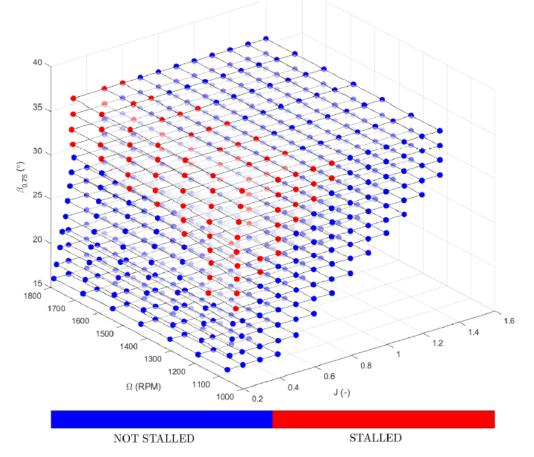
10

- No WT case shows presence of stall
  - Irregular pattern and amplitude
  - Distribution of signal energy across broadband of frequencies
- J = 0.5 shows stall at 1080 RPM
  - 1800 RPM has repeatable pattern of constant amplitude with dominant 1/rev spike
  - FFT of 1800 RPM shows only harmonics

# Results – Blade Modes






| Mode Shape                 | Mode Number | Range of $f_m$ (Hz) |
|----------------------------|-------------|---------------------|
| 1st Flap Bending           | 1           | 90-100              |
| 2nd Flap Bending           | 2           | 295-305             |
| 3rd Flap Bending           | 3           | 452-462             |
| 1st Torsion - Flap Bending | 4           | 804-814             |

- SG data plotted using logarithmic scale
- Solid lines (Numerical) and dashed (Experimental)
- Blade modes identified.
  - 1<sup>st</sup> peak at 90-100 Hz which translates to nondimensional frequency of 3/rev @ 1800 RPM (30Hz) and 5/rev @ 1080 RPM (18Hz)
  - Stall cell shedding manifest as excitation of 1<sup>st</sup> flap bending mode.
  - Blade torsional excitation needed to a excite a modal response such as stall flutter is large for rigid blades.

#### Slide Redacted

# **Results - Stall Boundary Criteria**

- Collapse of induced velocity around WT loop
- **Departure from linear behaviour** of the flap bending strain vs blade pitch curves.
- Marked increase of the standard deviation of the flap bending strain, up to twice the pre-stalled conditions.
- Presence of non-harmonic content in the strain spectra, up to 20 % in amplitude of the corresponding harmonic content.
- Non consistent oscillation amplitude in the strain time history.



#### Conclusions

- A criteria to detect stall onset using strain gauges was developed.
- Flap bending bridges are shown to be reliable in detecting stall onset.
- Criteria in agreement with aerodynamic performance measurements.
- Blade modes can be clearly identified.

#### Thank you for your attention

#### Any Questions?

Alexander D. Croke Research Assistant – University of Glasgow Alexander.Croke@Glasgow.ac.uk