

The influence of gaps on boundary layer transition

Chetan Jagadeesh City, University of London

Study of the influence of surface gaps in the boundary layer stability and transition

VICTOR VICTORINO¹, CHETAN JAGADEESH², MICHAEL GASTER² AND MARCELLO MEDEIROS¹

¹ SAO CARLOS SCHOOL OF ENGINEERING - UNIVERSITY OF SAO PAULO

² SCHOOL OF SCIENCE AND TECHNOLOGY - CITY ST GEORGE'S, UNIVERSITY OF LONDON

NWTF Conference : Birmingham, April 2025

Herbert (1988)

Motivation

Surface gaps are among us!

≻Gaster wind tunnel

Test Section Dimensions0.91 m x 0.91 m x 3m

Variable-depth cavity system

Cavity depth Travel:

 $-4.0 \le D \le 28.5$ [mm]

Parametric space

- L/δ^* increases with U_∞
- D/δ^* increases with U_∞ or D
- L/δ^* and Re_{δ^*} are mutually dependent on U_∞
- Designed to achieve "bypass" transition according to Crouch et al. (2022)

Flat plate model

Spanwise Velocity

Wind tunnel comparison

Part of the experimental campaingn was designed to collect data to compare the LANT wind tunnel (Brazil) with the Gaster Wind Tunnel (City)

Gap near-field

Streamwise disturbance amplification

1. Regime: T-S wave affected by the gap

- Shallow gaps affects the T-S waves
 - Local effect
 - Residual effect

 $U/\nu = 1.54 (10^6)$ $L/\delta^* = 30.7$ $Re_{\delta^*} = 1505$

1. Regime: T-S wave affected by the gap

Streamwise growth of the dominant T-S frequency

 $U/\nu = 1.54 \ (10^6)$ $L/\delta^* = 30.7$ $Re_{\delta^*} = 1505$

 $U/\nu = 1.54 \ (10^6)$ $L/\delta^* = 30.7$ $Re_{\delta^*} = 1505$

2. Regime: "Relaminarization"

21

2. Regime: "Relaminarization" (deep-gap limit)

2. Regime: Relaminarization (deep-gap limit)

• ΔN model before deep-gap limit is similar to BFS model from Wang & Gaster (2005)

$U/\nu = 1.54 (10^6)$ $L/\delta^* = 30.7$ $Re_{\delta^*} = 1505$

3. Regime: Bypass transition

Profiles

Mean profiles

Final remarks

- A flow characterization was employed to compare the flow quality in both wind tunnels
- The effect of a gap in the BL stability and transition was experimentally investigated. The following regimes were found
 - 1. T-S affected by the gap
 - Shallow gaps
 - ΔN behaves similar to the backward-facing step model
 - 2. Relaminarization
 - A turbulent mixing layer undergoes relaminarization downstream of the gap leaving a residual boost in the T-S wave
 - This might be correlated with the deep-gap limit found by Crouch et. al. (2022)
 - 3. Bypass transition
 - After a strong Rossiter mode develops transition is trigged right at the gap trailing edge
 - The threshold bound depends on the gap streamwise length
 - Experiments confirmed results from experiments done in Brazil (LANT) and numerical/theoretical results