

Development of Binary Pressure-Sensitive Paint for Short Duration Hypersonic Wind Tunnels

Mr Oscar Jones, Dr Luke J. Doherty, Dr Laurent M. Le Page, Mr Liam P. McQuellin, Mr Tom Tyler

Motivation

 Surface pressure distribution is one of the most important properties measured in wind tunnel experiments

NWTF 🚬

- Pressure-sensitive paint (PSP) allows for
 - Non-intrusive measurement
 - Quantitative measurement
 - Measurement the continuous surface pressure distribution
- Validating computational and numerical models

Theory

- Oxygen-quenching of fluorescent signal
- Binary PSP pressure-insensitive component

Adapted from Sakaue, H., & Sullivan, J. (2000, January 10). Fast response time characteristics of anodized aluminum pressure sensitive paint. *38th Aerospace Sciences Meeting and Exhibit.* https://doi.org/10.2514/6.2000-506

- Developing on previous binary PSP experiments at Oxford
- Investigate variables affecting binary PSP response
- Test developed mixtures on canonical geometries at Mach 5

Pressure signal

Reference signal

Chris Wheeler, Andrew Hyslop, Joao Vieira, Laurent Le Page, Mark K Quinn, Nafiz H K Chowdhury, and Luke J Doherty. Surface pressure measurements on a free-flying cone at Mach 7 using pressure sensitive paint. 2022.

Experimental Setup – Mixture Development

- Diameter: 340mm. Height: 200mm
- Absolute pressure range: 0 bar to 3 bar
- Test coupons ($60mm \times 60mm \times 2mm$)
- Wind tunnel models

PSP Rig

- Right-angle measurement of fluorescent intensity
- Beaker solutions and test coupons

NWTF >

Experimental Setup – High-Density Tunnel

NWTF >

High-Density Tunnel test section

Optical filtering arrangement

NWTF >

- Pressure-insensitive component: Fluorescein
- Pressure-sensitive component: Ru(dpp)₃
- Solvent: Dichloromethane

Pressure signal

Reference signal

Chris Wheeler, Andrew Hyslop, Joao Vieira, Laurent Le Page, Mark K Quinn, Nafiz H K Chowdhury, and Luke J Doherty. Surface pressure measurements on a free-flying cone at Mach 7 using pressure sensitive paint. 2022.

- Pressure-insensitive component: Fluorescein Sodium Salt
- Solvent: Isopropyl Alcohol

- Pressure-insensitive component: Fluorescein Sodium Salt
- Pressure-sensitive component: Ru(dpp)₃
- Solvent: Isopropyl Alcohol

- Pressure-insensitive component: Fluorescein Sodium Salt
- Pressure-sensitive component: Ru(dpp)₃
- Solvent: Isopropyl Alcohol

120

Influence of Luminophore Concentration

- Fluorescein Sodium Salt: $M_r = 376.27$
- Ru(dpp)₃: $M_r = 1196.17$

NWTF 🚬

Influence of pH

NWTF >

- Binary PSP solution: $pH \approx 3$
- Fluorescein exists in the neutral molecule state

pH = 6Fluorescein Sodium Salt in Isopropyl Alcohol

pH = 2Fluorescein Sodium Salt in Isopropyl Alcohol

High-Density Tunnel Results

Reference signal intensity

Pressure signal intensity

Surface pressure distribution

NWTF 🚬

- Narrower band-pass filters
- Precision mass balance

- Narrower band-pass filters
- Precision mass balance
- Alkaline solvent

- Narrower band-pass filters
- Precision mass balance
- Alkaline solvent
- Flat plate geometry

Questions

