

Adaptive Test Management – Moving on from OFAT and DOE

Doug Greenwell Cranfield and AerodynamiQ

Wind Tunnel Test Management – Moving on from OFAT and DOE

Dr Doug GreenwellConsulting Aerodynamicist, AeroDynamiQ LtdFWCAT Technical Domain Lead for Aerodynamics and Flight Control

NWTF 2025 Conference, Birmingham, April 2nd-3rd 2025

Ϋ́

Dstl funded 3 year project (2023-2026)

Delivered though a prime contractor QinetiQ and a consortium of suppliers including OEMs, Tier 2, SMEs, and Academia

To address MODs future challenges in the air environment, there is a need for continued research and development of fixed wing aircraft concepts, technologies and knowledge within the Air Domain. The aim for the Fixed Wing Concepts & Technologies (FWCAT) project is to identify opportunities and deliver research and development activities that deliver high potential benefit to MOD's fixed wing aircraft programmes

F	٦.		
	-	,	

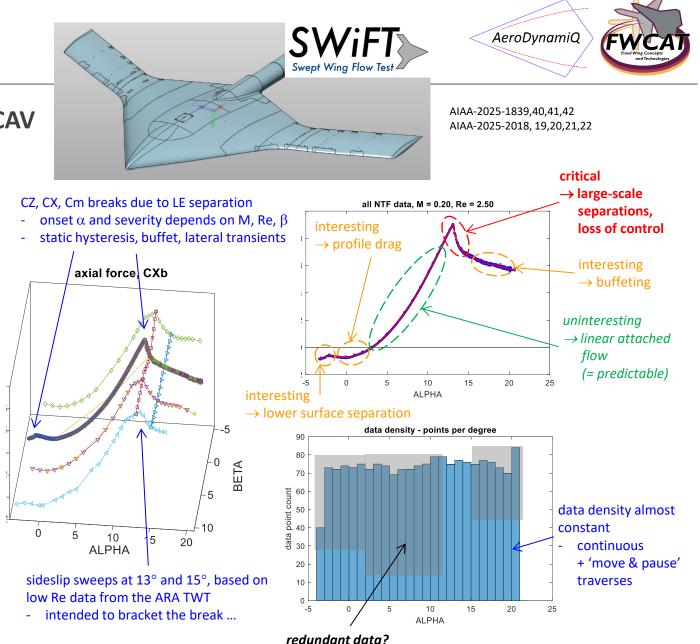
Topic areas: Airframe Structures and Manufacturing, Aerodynamics and flight control, including propulsion integration and weapons integration, Vehicle Systems, Multidisciplinary and conceptual design

Platform priorities<mark>: Future combat aircraft, Unmanned air systems, Future tankers, Military transport, Reusable hypersonics</mark>

QINETIQ BAE SYSTEMS

University of Sheffield

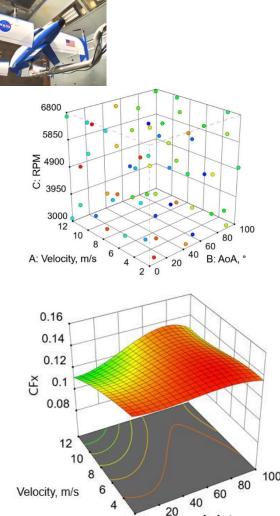
Wind Tunnel Test Management → Background



- MoD/Dstl are completely dependent on other organisations for aerodynamic ground testing
 - e.g. commercial facilities (ARA/BAe, ETW), overseas research organisations (NASA, AEDC, NRC, DSTG etc)
 - limited budgets, no preferential treatment \rightarrow on access, on test capabilities, or on technical support
- the UK needs to get the most it can out of the *available* test *capacity* and test *capability*
 - effectiveness \rightarrow will the test programme provide the information we need?
 - $cost \rightarrow can$ the test programme be undertaken within the budget we have?
 - timeliness \rightarrow can the test programme be undertaken in time to make a difference?
- Inks to other 'Smart Testing' paradigms
 - proposed ATI 'National Aerodynamics Challenge' programme $\rightarrow a \ dual \ use \ civil/military \ capability$
 - BAe/ARA/MBDA collaborative activity on 'Smart Aerodynamic Testing' (SAT)
 - Airbus 'Feature Rich Testing' (FeRiT)
- these tend to emphasize advanced instrumentation systems and CFD/EFD fusion (digital twinning)
- the 'elephant in the room' \rightarrow *the planning and management of the test itself*
 - covering both pre-test planning, and in-test execution
 - a major factor governing the effectiveness of the test \rightarrow under direct control of the test data customer

NATO STO AVT-369 — Digital Twin Technology Development

Recent Experience


- NATO AVT-298 'SWiFT' blended wing body UCAV
 - Dstl/AFRL/NAVAIR/NASA collaboration 2018-25
- Reynolds Number effects on swept wings
 - Dstl test at ARA, NASA test in NTF (cryogenic)
 - to be tested at ETW in 2025, with ATI support
 - very complex flow topology, dominated by leading-edge separation
- NTF data illustrates common issues with conventional wind tunnel test planning
 - pre-determined sideslip sweeps missed
 the critical breaks at higher M/Re
 → test matrix needs to adapt to events
 - nothing much of interest happens over large regions of the test envelope
 → high data density not always needed
- implications for test <u>effectiveness</u> and <u>cost</u>

Test Management Methodologies → Test Matrices

- current approaches to test matrix planning can be categorised as:
 - $ad-hoc \rightarrow$ 'One Factor at a Time' (OFAT)
 - formal \rightarrow 'Design of Experiments' (DOE)
- OFAT experimental design is the default methodology for most wind tunnels
 - simple, intuitive, easy to implement ... but can be inflexible and inefficient
 - heavily influenced by the data customer's and the facility test engineer's prior knowledge, experience, prejudices, and expectations ...
 - planning focuses on sequencing traverses to minimise model and tunnel condition changes
 - 'in-test' matrix reconfiguration done under pressure, and in a rather ad-hoc manner
- DOE covers a range of statistically-based methodologies for experiment design
 - complex, training needed, difficult to implement ... but (in principle) more efficient
 - factorial design makes minimal use of prior knowledge of expected aero behaviour
 - best suited to 'handle-turning' S&C or performance database generation, and to calibration
 → when the data is well-behaved, i.e. representable by smooth(ish) response surfaces
 - data sequence must be 'randomised' \rightarrow makes it very unpopular with tunnel managers
 - $-\,$ inflexible \rightarrow optimal factorial design requires the entire test programme to be completed ...

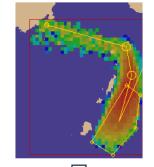
AoA.

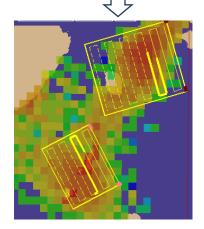
2 0

AIAA-2021-834

Test Management Methodologies → An Alternative

• OFAT and DOE are both 'grid' or 'mapping' methods


- an n-dimensional lattice encompassing the full range of relevant factors is defined *before* the test
- adjustments to the grid in response to data surprises or test constraints are not easy
- much of the data acquired is not actually needed


• but objectives for wind tunnel testing of (military ?) flight vehicles have changed

- database generation no longer a priority
 - \rightarrow but we do need to know where the edges of the envelope are, and what causes them
- we usually have a reasonable idea upfront of the behaviour to be expected
 - \rightarrow CFD, exploratory testing, prior experience/knowledge

a wind tunnel test can therefore be thought of as more akin to a maritime search ...

- move quickly through 'boring' or 'empty' regions, focus on 'interesting' or 'worrying' regions
- define an initial search pattern based on prior knowledge,
- continuously adjust the search pattern as new knowledge is acquired,
- stop when you've found what you need to find
- ADQ and CU will be looking at existing theories and tools for optimal searches
 - based on a 'Bayesian' rather than 'frequentist' approach to probability

US Coast Guard 'Search and Rescue Optimal Planning System'

