

A complementary study of simulations and experiments to characterize the mean structure of the recirculatory flow at the rear of a 3D blunt body at different attitudes

Olivier Cadot University of Liverpool

Mean structure of the recirculating flow at the rear of a 3D blunt body at different attitudes

Olivier Cadot

Department of Mechanical and Aerospace Engineering

Summary

- 1. Introduction about steady asymmetry and recirculating flow structure of blunt trailing edge bluff-bodies
- 2. LES and Experiment at different body attitudes
- 3. Conclusion and perspectives

1. Introduction

Permanent asymmetry when $\frac{2}{3} \le \frac{H}{W} \le \frac{3}{2}$

Zampogna & Boujo (J. Fluid Mech 2023)

Grandemange, Gohlke & Cadot (Phys. Rev. E 2012)

Two equilibrium states with a wake deviation towards the major axis direction of the base

Krajnovic & Davidson (JFE 2003)

Fig. 9 Time-averaged streamlines projected onto symmetry plane z=0 of the bus. (a) Fine grid, (b) medium grid, (c) coarse grid.

Fig. 10 The isosurface of time-averaged pressure p=-0.20. The black curves represent the vortex cores of the thin edge vortices *B*, the ring vortex *W*, and the longitudinal vortices behind the separation bubble *P*. Vortices on the right side (*z* <0), *P* and *T*, are visualized using streamlines in planes *x* =1.4*H* and *x*=-0.48*H*, respectively (note that the mirror image vortices on the left side, i.e., *z*>0, are not shown in this figure). View of the rear face of the body.

Table 3 Time-averaged pressure drag, lift, and rear pressure coefficients and dominating frequency (St_p) of the C_p signal (note that $\overline{C_p}$ means the integrated C_p over the rear surface)

Σ.

Contournement

Case	$\langle C_D \rangle_t$	$\langle C_L \rangle_t$	$\langle \overline{C}_p \rangle_t$	St_p	
Coarse	0.206	-0.066 -0.066 -0.071	-0.216	0.073	
Medium	0.318		-0.224	0.055	
Fine	0.33		-0.229	0.059	

Rouméas. Gilliéron & Kourta (C&F 2008)

Evrard, Cadot, Herbert, Ricot, Vigneron, & Délery (JFS 2016)

McArthur, Burton, Thompson & Sheridan (JFS 2016)

Recirculating flow topology and reattachment

2. A complementary study of experiment and LES

Fan, Parezanovic & Cadot (JFM 2022)

Fan, Xia, Minelli, Sebben & Cadot (Submitted to JFM 2025)

The asymmetric structure can increase or reduce the lift on the body through the vertical pressure gradient \vec{g} .

Change of body attitude

• mean flow investigation

wake transition investigation
LES investigation

UNIVERSITY OF LIVERPOOL

Attitude (β, α)	$C_i/C_i^{\rm WT}$	C_x	C_x^{LES}	C_b	C_b^{LES}	C_y	C_y^{LES}	C_z	C_z^{LES}
$(0^{\circ}, -1.5^{\circ})$	0.895	0.321	0.318	0.222	0.225	0.005	0.000	-0.287	-0.420
$(0^{\circ}, 0^{\circ})$	0.901	0.301	0.306	0.206	0.217	0.002	0.001	-0.095	-0.176
$(0^{\circ}, 1.5^{\circ})$	0.896	0.320	0.322	0.218	0.229	0.001	0.000	0.052	0.019
$(0^{\circ}, 2.6^{\circ})$	0.891	0.340	0.330	0.226	0.228	-0.015	-0.002	0.185	0.244
$(6^{\circ}, -1.5^{\circ})$	0.868	0.348	0.341	0.257	0.262	-0.461	-0.507	-0.274	-0.389
$(6^{\circ}, 0^{\circ})$	0.872	0.348	0.341	0.257	0.272	-0.475	-0.508	-0.088	-0.179
$(6^{\circ}, 1.5^{\circ})$	0.868	0.341	0.325	0.248	0.252	-0.459	-0.495	0.078	0.034
$(12^{\circ}, -1.5^{\circ})$	0.843	0.372	0.363	0.323	0.343	-0.962	-1.059	-0.216	-0.380
$(12^{\circ}, 0^{\circ})$	0.848	0.373	0.350	0.321	0.335	-0.973	-1.066	0.014	-0.088
$(12^{\circ}, 1.5^{\circ})$	0.843	0.381	0.350	0.318	0.328	-0.982	-1.083	0.249	0.221

TABLE 2. Force component and base suction coefficients obtained for the experiment with the correction factor C_i/C_i^{WT} (see Eq.2.6) and the LES at different body attitudes.

FIGURE 5. Comparison of the aerodynamic coefficients obtained from the experiment and the LES for: (a) drag; (b) base suction; (c) side force and (d) lift.

Wake orientation in attitude space

0.3

6. Conclusion and perspectives

- A 3D structure of the recirculating flow is proposed :
 - The recirculating flow is subjected to a steady instability leading to an asymmetry towards the major axis of the base
 - This asymmetry is associated with a circulation provoking the closure of the separated surface into two longitudinal vortices
- The LES will be applied to a moving ground (real boundary condition for ground vehicles)

Thank you for your attention

Role of static ground and supports

Sychev, Balachandar, Roshko

Separatrix equilibrium

$$-\oint_{\mathscr{C}} C_p dx^* - \oint_{\mathscr{C}} 2\overline{w'^{*2}} dx^* - \oint_{\mathscr{C}} 2\overline{u'^* w'^*} dz^* = 0,$$

Ground separation

(a)

- Boundary layer (static floor)
- Adverse pressure gradient

